1. 概述

本文将探讨数独谜题及其求解算法。我们将用Java实现两种解决方案:第一种是简单的暴力回溯算法,第二种采用舞蹈链(Dancing Links)技术。需要说明的是,我们将重点关注算法实现而非面向对象设计。

2. 数独谜题

数独是一个9×9单元格的组合数字谜题,部分格子填有1-9的数字。目标是用剩余数字填充空白格子,使得:

  • 每行每列都包含1-9且不重复
  • 每个3×3子网格内数字也不重复

谜题难度随空白格子数量增加而提升。

2.1 测试棋盘

为验证算法有效性,我们采用**"世界最难数独"**作为测试用例:

8 . . . . . . . . 
. . 3 6 . . . . . 
. 7 . . 9 . 2 . . 
. 5 . . . 7 . . . 
. . . . 4 5 7 . . 
. . . 1 . . . 3 . 
. . 1 . . . . 6 8 
. . 8 5 . . . 1 . 
. 9 . . . . 4 . .

2.2 解析结果

提前揭晓答案,正确解法如下:

8 1 2 7 5 3 6 4 9 
9 4 3 6 8 2 1 7 5 
6 7 5 4 9 1 2 8 3 
1 5 4 2 3 7 8 9 6 
3 6 9 8 4 5 7 2 1 
2 8 7 1 6 9 5 3 4 
5 2 1 9 7 4 3 6 8 
4 3 8 5 2 6 9 1 7 
7 9 6 3 1 8 4 5 2

3. 回溯算法

3.1 算法原理

回溯算法通过逐格尝试所有可能解来求解数独:

  • ✅ 若当前数字不违反约束,则继续填充下一格
  • ❌ 若违反约束,则尝试下一个数字
  • ⚠️ 若当前格子所有数字都无效,则回溯到上一格修改数字

本质是暴力搜索所有可能解,但通过剪枝优化效率。

3.2 实现方案

首先用二维数组表示棋盘,0表示空格:

int[][] board = {
  { 8, 0, 0, 0, 0, 0, 0, 0, 0 },
  { 0, 0, 3, 6, 0, 0, 0, 0, 0 },
  { 0, 7, 0, 0, 9, 0, 2, 0, 0 },
  { 0, 5, 0, 0, 0, 7, 0, 0, 0 },
  { 0, 0, 0, 0, 4, 5, 7, 0, 0 },
  { 0, 0, 0, 1, 0, 0, 0, 3, 0 },
  { 0, 0, 1, 0, 0, 0, 0, 6, 8 },
  { 0, 0, 8, 5, 0, 0, 0, 1, 0 },
  { 0, 9, 0, 0, 0, 0, 4, 0, 0 } 
};

核心求解方法:

private boolean solve(int[][] board) {
    for (int row = BOARD_START_INDEX; row < BOARD_SIZE; row++) {
        for (int column = BOARD_START_INDEX; column < BOARD_SIZE; column++) {
            if (board[row][column] == NO_VALUE) {
                for (int k = MIN_VALUE; k <= MAX_VALUE; k++) {
                    board[row][column] = k;
                    if (isValid(board, row, column) && solve(board)) {
                        return true;
                    }
                    board[row][column] = NO_VALUE;
                }
                return false;
            }
        }
    }
    return true;
}

约束检查方法:

private boolean isValid(int[][] board, int row, int column) {
    return (rowConstraint(board, row)
      && columnConstraint(board, column) 
      && subsectionConstraint(board, row, column));
}

行约束检查:

private boolean rowConstraint(int[][] board, int row) {
    boolean[] constraint = new boolean[BOARD_SIZE];
    return IntStream.range(BOARD_START_INDEX, BOARD_SIZE)
      .allMatch(column -> checkConstraint(board, row, constraint, column));
}

列约束检查:

private boolean columnConstraint(int[][] board, int column) {
    boolean[] constraint = new boolean[BOARD_SIZE];
    return IntStream.range(BOARD_START_INDEX, BOARD_SIZE)
      .allMatch(row -> checkConstraint(board, row, constraint, column));
}

3×3子网格约束检查:

private boolean subsectionConstraint(int[][] board, int row, int column) {
    boolean[] constraint = new boolean[BOARD_SIZE];
    int subsectionRowStart = (row / SUBSECTION_SIZE) * SUBSECTION_SIZE;
    int subsectionRowEnd = subsectionRowStart + SUBSECTION_SIZE;

    int subsectionColumnStart = (column / SUBSECTION_SIZE) * SUBSECTION_SIZE;
    int subsectionColumnEnd = subsectionColumnStart + SUBSECTION_SIZE;

    for (int r = subsectionRowStart; r < subsectionRowEnd; r++) {
        for (int c = subsectionColumnStart; c < subsectionColumnEnd; c++) {
            if (!checkConstraint(board, r, constraint, c)) return false;
        }
    }
    return true;
}

通用约束检查方法:

boolean checkConstraint(
  int[][] board, 
  int row, 
  boolean[] constraint, 
  int column) {
    if (board[row][column] != NO_VALUE) {
        if (!constraint[board[row][column] - 1]) {
            constraint[board[row][column] - 1] = true;
        } else {
            return false;
        }
    }
    return true;
}

打印棋盘方法(非算法核心):

private void printBoard() {
    for (int row = BOARD_START_INDEX; row < BOARD_SIZE; row++) {
        for (int column = BOARD_START_INDEX; column < BOARD_SIZE; column++) {
            System.out.print(board[row][column] + " ");
        }
        System.out.println();
    }
}

⚠️ 踩坑提示:虽然算法能正确求解,但效率不高——它会重复检查已知无效的解法。

4. 舞蹈链(Dancing Links)

4.1 精确覆盖问题

数独可转化为精确覆盖问题,即从集合中选出子集,使每个元素恰好出现一次。例如:

  • 集合 S = {A, B, C, D, E, F}
  • A = {1,4,7}, B={1,4}, C={4,5,7}, D={3,5,6}, E={2,3,6,7}, F={2,7}

用矩阵表示(行=集合,列=元素):

  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 
A | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
B | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
C | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
D | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
E | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
F | 0 | 1 | 0 | 0 | 0 | 0 | 1 |

解 S* = {B,D,F} 满足精确覆盖:

  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 
B | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
D | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
F | 0 | 1 | 0 | 0 | 0 | 0 | 1 |

4.2 算法X

Donald Knuth提出的算法X是解决精确覆盖问题的递归回溯算法:

  1. 若矩阵无列,当前部分解即为完整解
  2. 选择列c(确定性)
  3. 选择满足A[r,c]=1的行r(非确定性)
  4. 将行r加入部分解
  5. 删除所有包含A[i,j]=1的行i和列j
  6. 递归处理简化后的矩阵

舞蹈链是其高效实现,利用双向链表快速删除/恢复节点。

4.3 转化为精确覆盖

数独需满足4类约束:

  1. 每行数字不重复
  2. 每列数字不重复
  3. 每3×3子网格数字不重复
  4. 每格仅填一个数字

构建9³×(9×9×4)的矩阵:

private static int BOARD_SIZE = 9;
private static int SUBSECTION_SIZE = 3;
private static int NO_VALUE = 0;
private static int CONSTRAINTS = 4;
private static int MIN_VALUE = 1;
private static int MAX_VALUE = 9;
private static int COVER_START_INDEX = 1;

索引计算方法:

private int getIndex(int row, int column, int num) {
    return (row - 1) * BOARD_SIZE * BOARD_SIZE 
      + (column - 1) * BOARD_SIZE + (num - 1);
}

矩阵构建方法:

private boolean[][] createExactCoverBoard() {
    boolean[][] coverBoard = new boolean
      [BOARD_SIZE * BOARD_SIZE * MAX_VALUE]
      [BOARD_SIZE * BOARD_SIZE * CONSTRAINTS];

    int hBase = 0;
    hBase = checkCellConstraint(coverBoard, hBase);
    hBase = checkRowConstraint(coverBoard, hBase);
    hBase = checkColumnConstraint(coverBoard, hBase);
    checkSubsectionConstraint(coverBoard, hBase);
    
    return coverBoard;
}

private int checkSubsectionConstraint(boolean[][] coverBoard, int hBase) {
    for (int row = COVER_START_INDEX; row <= BOARD_SIZE; row += SUBSECTION_SIZE) {
        for (int column = COVER_START_INDEX; column <= BOARD_SIZE; column += SUBSECTION_SIZE) {
            for (int n = COVER_START_INDEX; n <= BOARD_SIZE; n++, hBase++) {
                for (int rowDelta = 0; rowDelta < SUBSECTION_SIZE; rowDelta++) {
                    for (int columnDelta = 0; columnDelta < SUBSECTION_SIZE; columnDelta++) {
                        int index = getIndex(row + rowDelta, column + columnDelta, n);
                        coverBoard[index][hBase] = true;
                    }
                }
            }
        }
    }
    return hBase;
}

private int checkColumnConstraint(boolean[][] coverBoard, int hBase) {
    for (int column = COVER_START_INDEX; column <= BOARD_SIZE; c++) {
        for (int n = COVER_START_INDEX; n <= BOARD_SIZE; n++, hBase++) {
            for (int row = COVER_START_INDEX; row <= BOARD_SIZE; row++) {
                int index = getIndex(row, column, n);
                coverBoard[index][hBase] = true;
            }
        }
    }
    return hBase;
}

private int checkRowConstraint(boolean[][] coverBoard, int hBase) {
    for (int row = COVER_START_INDEX; row <= BOARD_SIZE; r++) {
        for (int n = COVER_START_INDEX; n <= BOARD_SIZE; n++, hBase++) {
            for (int column = COVER_START_INDEX; column <= BOARD_SIZE; column++) {
                int index = getIndex(row, column, n);
                coverBoard[index][hBase] = true;
            }
        }
    }
    return hBase;
}

private int checkCellConstraint(boolean[][] coverBoard, int hBase) {
    for (int row = COVER_START_INDEX; row <= BOARD_SIZE; row++) {
        for (int column = COVER_START_INDEX; column <= BOARD_SIZE; column++, hBase++) {
            for (int n = COVER_START_INDEX; n <= BOARD_SIZE; n++) {
                int index = getIndex(row, column, n);
                coverBoard[index][hBase] = true;
            }
        }
    }
    return hBase;
}

初始化棋盘:

private boolean[][] initializeExactCoverBoard(int[][] board) {
    boolean[][] coverBoard = createExactCoverBoard();
    for (int row = COVER_START_INDEX; row <= BOARD_SIZE; row++) {
        for (int column = COVER_START_INDEX; column <= BOARD_SIZE; column++) {
            int n = board[row - 1][column - 1];
            if (n != NO_VALUE) {
                for (int num = MIN_VALUE; num <= MAX_VALUE; num++) {
                    if (num != n) {
                        Arrays.fill(coverBoard[getIndex(row, column, num)], false);
                    }
                }
            }
        }
    }
    return coverBoard;
}

4.4 舞蹈节点

舞蹈链的核心是双向链表操作:

class DancingNode {
    DancingNode L, R, U, D;
    ColumnNode C;

    DancingNode hookDown(DancingNode node) {
        assert (this.C == node.C);
        node.D = this.D;
        node.D.U = node;
        node.U = this;
        this.D = node;
        return node;
    }

    DancingNode hookRight(DancingNode node) {
        node.R = this.R;
        node.R.L = node;
        node.L = this;
        this.R = node;
        return node;
    }

    void unlinkLR() {
        this.L.R = this.R;
        this.R.L = this.L;
    }

    void relinkLR() {
        this.L.R = this.R.L = this;
    }

    void unlinkUD() {
        this.U.D = this.D;
        this.D.U = this.U;
    }

    void relinkUD() {
        this.U.D = this.D.U = this;
    }

    DancingNode() {
        L = R = U = D = this;
    }

    DancingNode(ColumnNode c) {
        this();
        C = c;
    }
}

4.5 列节点

列节点管理列操作:

class ColumnNode extends DancingNode {
    int size;
    String name;

    ColumnNode(String n) {
        super();
        size = 0;
        name = n;
        C = this;
    }

    void cover() {
        unlinkLR();
        for (DancingNode i = this.D; i != this; i = i.D) {
            for (DancingNode j = i.R; j != i; j = j.R) {
                j.unlinkUD();
                j.C.size--;
            }
        }
    }

    void uncover() {
        for (DancingNode i = this.U; i != this; i = i.U) {
            for (DancingNode j = i.L; j != i; j = j.L) {
                j.C.size++;
                j.relinkUD();
            }
        }
        relinkLR();
    }
}

4.6 求解器

构建舞蹈链网格:

private ColumnNode makeDLXBoard(boolean[][] grid) {
    int COLS = grid[0].length;

    ColumnNode headerNode = new ColumnNode("header");
    List<ColumnNode> columnNodes = new ArrayList<>();

    for (int i = 0; i < COLS; i++) {
        ColumnNode n = new ColumnNode(Integer.toString(i));
        columnNodes.add(n);
        headerNode = (ColumnNode) headerNode.hookRight(n);
    }
    headerNode = headerNode.R.C;

    for (boolean[] aGrid : grid) {
        DancingNode prev = null;
        for (int j = 0; j < COLS; j++) {
            if (aGrid[j]) {
                ColumnNode col = columnNodes.get(j);
                DancingNode newNode = new DancingNode(col);
                if (prev == null) prev = newNode;
                col.U.hookDown(newNode);
                prev = prev.hookRight(newNode);
                col.size++;
            }
        }
    }

    headerNode.size = COLS;

    return headerNode;
}

启发式列选择:

private ColumnNode selectColumnNodeHeuristic() {
    int min = Integer.MAX_VALUE;
    ColumnNode ret = null;
    for (
      ColumnNode c = (ColumnNode) header.R; 
      c != header; 
      c = (ColumnNode) c.R) {
        if (c.size < min) {
            min = c.size;
            ret = c;
        }
    }
    return ret;
}

递归搜索核心:

private void search(int k) {
    if (header.R == header) {
        handleSolution(answer);
    } else {
        ColumnNode c = selectColumnNodeHeuristic();
        c.cover();

        for (DancingNode r = c.D; r != c; r = r.D) {
            answer.add(r);

            for (DancingNode j = r.R; j != r; j = j.R) {
                j.C.cover();
            }

            search(k + 1);

            r = answer.remove(answer.size() - 1);
            c = r.C;

            for (DancingNode j = r.L; j != r; j = j.L) {
                j.C.uncover();
            }
        }
        c.uncover();
    }
}

5. 性能对比

在同一台机器上测试两种算法(避免硬件差异):

  • 回溯算法:约250毫秒
  • 舞蹈链:约50毫秒

舞蹈链快约5倍!简单粗暴的结论:舞蹈链碾压回溯

6. 总结

本文用Java实现了两种数独求解算法:

  1. 回溯算法:简单暴力,适合标准9×9数独
  2. 舞蹈链:更高效,尤其适合复杂谜题

两种算法都能在秒级解决最难题。完整实现代码可在GitHub获取。


原始标题:Create a Sudoku Solver in Java