2. 概述
本文将深入探讨 java.util.concurrent
包中的 TransferQueue 构造。简单来说,这个队列允许我们基于生产者-消费者模式编写程序,并协调生产者向消费者传递消息的过程。
其实现与 BlockingQueue
类似,但新增了实现背压(backpressure)的能力。这意味着当生产者使用 transfer()
方法发送消息时,生产者线程会保持阻塞状态,直到消息被消费者实际消费。
3. 单生产者 - 零消费者场景
让我们测试 TransferQueue
的 transfer()
方法。预期行为是:生产者会被阻塞,直到消费者通过 take()
方法从队列中获取消息。
为验证这一点,我们创建一个单生产者、零消费者的程序。生产者首次调用 transfer()
时会无限期阻塞,因为没有消费者从队列中获取该元素。
先看 Producer
类实现:
class Producer implements Runnable {
private TransferQueue<String> transferQueue;
private String name;
private Integer numberOfMessagesToProduce;
public AtomicInteger numberOfProducedMessages
= new AtomicInteger();
@Override
public void run() {
for (int i = 0; i < numberOfMessagesToProduce; i++) {
try {
boolean added
= transferQueue.tryTransfer("A" + i, 4000, TimeUnit.MILLISECONDS);
if(added){
numberOfProducedMessages.incrementAndGet();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
// 标准构造方法
}
我们向构造函数传入 TransferQueue
实例、生产者名称和待传输的消息数量。注意这里使用了带超时的 tryTransfer()
方法:等待4秒后,若生产者仍无法传输消息,则返回 false
并继续处理下一条消息。numberOfProducedMessages
变量用于跟踪已生产的消息数量。
再看 Consumer
类:
class Consumer implements Runnable {
private TransferQueue<String> transferQueue;
private String name;
private int numberOfMessagesToConsume;
public AtomicInteger numberOfConsumedMessages
= new AtomicInteger();
@Override
public void run() {
for (int i = 0; i < numberOfMessagesToConsume; i++) {
try {
String element = transferQueue.take();
longProcessing(element);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
private void longProcessing(String element)
throws InterruptedException {
numberOfConsumedMessages.incrementAndGet();
Thread.sleep(500);
}
// 标准构造方法
}
与生产者类似,但通过 take()
方法从队列获取元素。在 longProcessing()
方法中模拟耗时操作,并递增 numberOfConsumedMessages
计数器。
现在启动仅含一个生产者的程序:
@Test
public void whenUseOneProducerAndNoConsumers_thenShouldFailWithTimeout()
throws InterruptedException {
// given
TransferQueue<String> transferQueue = new LinkedTransferQueue<>();
ExecutorService exService = Executors.newFixedThreadPool(2);
Producer producer = new Producer(transferQueue, "1", 3);
// when
exService.execute(producer);
// then
exService.awaitTermination(5000, TimeUnit.MILLISECONDS);
exService.shutdown();
assertEquals(producer.numberOfProducedMessages.intValue(), 0);
}
我们尝试向队列发送3个元素,但生产者在第一个元素处阻塞——因为没有消费者获取该元素。tryTransfer()
方法会阻塞直到消息被消费或超时,超时后返回 false
表示传输失败,然后尝试传输下一条。程序输出如下:
Producer: 1 is waiting to transfer...
can not add an element due to the timeout
Producer: 1 is waiting to transfer...
4. 单生产者 - 单消费者场景
测试单生产者、单消费者的情况:
@Test
public void whenUseOneConsumerAndOneProducer_thenShouldProcessAllMessages()
throws InterruptedException {
// given
TransferQueue<String> transferQueue = new LinkedTransferQueue<>();
ExecutorService exService = Executors.newFixedThreadPool(2);
Producer producer = new Producer(transferQueue, "1", 3);
Consumer consumer = new Consumer(transferQueue, "1", 3);
// when
exService.execute(producer);
exService.execute(consumer);
// then
exService.awaitTermination(5000, TimeUnit.MILLISECONDS);
exService.shutdown();
assertEquals(producer.numberOfProducedMessages.intValue(), 3);
assertEquals(consumer.numberOfConsumedMessages.intValue(), 3);
}
TransferQueue
作为交换点,消费者未从队列获取元素前,生产者无法添加新元素。程序输出如下:
Producer: 1 is waiting to transfer...
Consumer: 1 is waiting to take element...
Producer: 1 transferred element: A0
Producer: 1 is waiting to transfer...
Consumer: 1 received element: A0
Consumer: 1 is waiting to take element...
Producer: 1 transferred element: A1
Producer: 1 is waiting to transfer...
Consumer: 1 received element: A1
Consumer: 1 is waiting to take element...
Producer: 1 transferred element: A2
Consumer: 1 received element: A2
由于 TransferQueue
的特性,队列元素的生成和消费是严格顺序化的。
5. 多生产者 - 多消费者场景
最后测试多生产者、多消费者的情况:
@Test
public void whenMultipleConsumersAndProducers_thenProcessAllMessages()
throws InterruptedException {
// given
TransferQueue<String> transferQueue = new LinkedTransferQueue<>();
ExecutorService exService = Executors.newFixedThreadPool(3);
Producer producer1 = new Producer(transferQueue, "1", 3);
Producer producer2 = new Producer(transferQueue, "2", 3);
Consumer consumer1 = new Consumer(transferQueue, "1", 3);
Consumer consumer2 = new Consumer(transferQueue, "2", 3);
// when
exService.execute(producer1);
exService.execute(producer2);
exService.execute(consumer1);
exService.execute(consumer2);
// then
exService.awaitTermination(10_000, TimeUnit.MILLISECONDS);
exService.shutdown();
assertEquals(producer1.numberOfProducedMessages.intValue(), 3);
assertEquals(producer2.numberOfProducedMessages.intValue(), 3);
}
本例包含两个生产者和两个消费者。程序启动时,两个生产者各能生产一个元素,随后阻塞直到有消费者从队列获取元素:
Producer: 1 is waiting to transfer...
Consumer: 1 is waiting to take element...
Producer: 2 is waiting to transfer...
Producer: 1 transferred element: A0
Producer: 1 is waiting to transfer...
Consumer: 1 received element: A0
Consumer: 1 is waiting to take element...
Producer: 2 transferred element: A0
Producer: 2 is waiting to transfer...
Consumer: 1 received element: A0
Consumer: 1 is waiting to take element...
Producer: 1 transferred element: A1
Producer: 1 is waiting to transfer...
Consumer: 1 received element: A1
Consumer: 2 is waiting to take element...
Producer: 2 transferred element: A1
Producer: 2 is waiting to transfer...
Consumer: 2 received element: A1
Consumer: 2 is waiting to take element...
Producer: 1 transferred element: A2
Consumer: 2 received element: A2
Consumer: 2 is waiting to take element...
Producer: 2 transferred element: A2
Consumer: 2 received element: A2
6. 总结
本文深入探讨了 java.util.concurrent
包中的 TransferQueue
构造。我们展示了如何使用它实现生产者-消费者程序,并通过 transfer()
方法实现背压机制——生产者必须等待消费者从队列中取出元素后才能继续发布新消息。
当需要防止生产者过度生产导致队列溢出(引发 OutOfMemoryError
)时,TransferQueue
尤其有用。在这种设计中,消费者实际控制着生产者的消息生成速度。
所有示例代码和代码片段可在 GitHub 获取——这是一个 Maven 项目,可直接导入运行。